Optimal bandwidth selection for recursive Gumbel kernel density estimators

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal bandwidth selection for semi-recursive kernel regression estimators

In this paper we propose an automatic selection of the bandwidth of the semi-recursive kernel estimators of a regression function defined by the stochastic approximation algorithm. We showed that, using the selected bandwidth and some special stepsizes, the proposed semi-recursive estimators will be very competitive to the nonrecursive one in terms of estimation error but much better in terms o...

متن کامل

Bandwidth Selection in Kernel Density Estimators for Multiple-Resolution Classification

We consider a problem of selection of parameters in a classifier based on the average of kernel density estimators where each estimator corresponds to a different data “resolution”. The selection is based on adjusting parameters of the estimators to minimize a substitute of the misclassification ratio. We experimentally compare the misclassification ratio and parameters selected for benchmark d...

متن کامل

Algorithms for maximum-likelihood bandwidth selection in kernel density estimators

In machine learning and statistics, kernel density estimators are rarely used on multivariate data due to the difficulty of finding an appropriate kernel bandwidth to overcome overfitting. However, the recent advances on information-theoretic learning have revived the interest on these models. With this motivation, in this paper we revisit the classical statistical problem of data-driven bandwi...

متن کامل

New Bandwidth Selection for Kernel Quantile Estimators

We propose a cross-validation method suitable for smoothing of kernel quantile estimators. In particular, our proposed method selects the bandwidth parameter, which is known to play a crucial role in kernel smoothing, based on unbiased estimation of a mean integrated squared error curve of which the minimising value determines an optimal bandwidth. This method is shown to lead to asymptotically...

متن کامل

Fast optimal bandwidth selection for kernel density estimation

We propose a computationally efficient 2−exact approximation algorithm for univariate Gaussian kernel based density derivative estimation that reduces the computational complexity from O(MN) to linear O(N +M). We apply the procedure to estimate the optimal bandwidth for kernel density estimation. We demonstrate the speedup achieved on this problem using the ”solve-the-equation plug-in” method, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Dependence Modeling

سال: 2019

ISSN: 2300-2298

DOI: 10.1515/demo-2019-0020